Medgar Evers College Math Circle The Middle School Initiative @
 The Immaculate Heart of Mary Middle School Brooklyn New York

Terrence Richard Blackman
Eleanor Holder
Medgar Evers College CUNY

February 4, 2010

What is the goal of the project?

- The Medgar Evers College Math Circle is an initiative designed to engage a broader, younger and more diverse student body, in the development of their mathematical interest and talent.

What is the goal of the project?

- The Medgar Evers College Math Circle is an initiative designed to engage a broader, younger and more diverse student body, in the development of their mathematical interest and talent.
- The goal of the program is to increase the quality and quantity of students who become mathematics educators and researchers, or who simply love and use mathematics in their studies, work and daily activities.

What is the goal of the project?

- The Medgar Evers College Math Circle is an initiative designed to engage a broader, younger and more diverse student body, in the development of their mathematical interest and talent.
- The goal of the program is to increase the quality and quantity of students who become mathematics educators and researchers, or who simply love and use mathematics in their studies, work and daily activities.
- To draw you to mathematics and to motivate you to excel in this subject

What is the goal of the project?

- The Medgar Evers College Math Circle is an initiative designed to engage a broader, younger and more diverse student body, in the development of their mathematical interest and talent.
- The goal of the program is to increase the quality and quantity of students who become mathematics educators and researchers, or who simply love and use mathematics in their studies, work and daily activities.
- To draw you to mathematics and to motivate you to excel in this subject
- To encourage you to undertake a future linked with mathematics, whether as mathematicians, mathematics educators, scientists, computer scientists, economists or business leaders.

How do I propose to achieve this?

- Expose you to some exciting mathematics

How do I propose to achieve this?

- Expose you to some exciting mathematics
- Offer you an opportunity to extend your mathematical knowledge and skill well beyond the high school curriculum

How do I propose to achieve this?

- Expose you to some exciting mathematics
- Offer you an opportunity to extend your mathematical knowledge and skill well beyond the high school curriculum
- I am going to introduce you to an area of mathematics called Number Theory

What is Number Theory?

- Number theory is concerned with properties of the integers:

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

What is Number Theory?

- Number theory is concerned with properties of the integers:

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

- The great mathematician Carl Friedrich Gauss called this subject arithmetic and of it he said: Mathematics is the queen of sciences and arithmetic the queen of mathematics.

What is Number Theory?

- Number theory is concerned with properties of the integers:

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

- The great mathematician Carl Friedrich Gauss called this subject arithmetic and of it he said: Mathematics is the queen of sciences and arithmetic the queen of mathematics.
- We might think that of all areas of mathematics certainly arithmetic should be the simplest, but it is a surprisingly deep subject. This is what I want to try to communicate to you.

What is Number Theory?

- Number theory is concerned with properties of the integers:

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

- The great mathematician Carl Friedrich Gauss called this subject arithmetic and of it he said: Mathematics is the queen of sciences and arithmetic the queen of mathematics.
- We might think that of all areas of mathematics certainly arithmetic should be the simplest, but it is a surprisingly deep subject. This is what I want to try to communicate to you.
- Over the course of our time together I will introduce you to the symbolic programming language called Maple.

What is Number Theory?

- Number theory is concerned with properties of the integers:

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

- The great mathematician Carl Friedrich Gauss called this subject arithmetic and of it he said: Mathematics is the queen of sciences and arithmetic the queen of mathematics.
- We might think that of all areas of mathematics certainly arithmetic should be the simplest, but it is a surprisingly deep subject. This is what I want to try to communicate to you.
- Over the course of our time together I will introduce you to the symbolic programming language called Maple.
- It is an excellent tool for exploring number theoretic questions.

How will we work?

- You will need a pencil and sheet of paper

How will we work?

- You will need a pencil and sheet of paper
- I am going to encourage you to figure out many of the important concepts and theorems of number theory for yourself.

How will we work?

- You will need a pencil and sheet of paper
- I am going to encourage you to figure out many of the important concepts and theorems of number theory for yourself.
- By actively participating in the development of the topics we develop a solid understanding of the material and gain valuable early insights into the realities and opportunities of mathematical research.

Some outstanding unsolved problems in number theory

- A solution to any one of these problems would make you quite famous

Some outstanding unsolved problems in number theory

- A solution to any one of these problems would make you quite famous
- Many of these problems concern prime numbers

Some outstanding unsolved problems in number theory

- A solution to any one of these problems would make you quite famous
- Many of these problems concern prime numbers
- What is a prime number?

Some outstanding unsolved problems in number theory

- A solution to any one of these problems would make you quite famous
- Many of these problems concern prime numbers
- What is a prime number?

Definition

An integer p is prime if $p \geq 2$ and the only positive divisors of p are 1 and p. An integer n is composite if $n \geq 2$ and n is not prime.

Some outstanding unsolved problems in number theory

- Is the number 1 prime or composite?

Some outstanding unsolved problems in number theory

- Is the number 1 prime or composite?
- The number 1 is neither prime nor composite.

Some outstanding unsolved problems in number theory

- Is the number 1 prime or composite?
- The number 1 is neither prime nor composite.
- Can you list all of the prime numbers up to 50 ?

Some outstanding unsolved problems in number theory

- Is the number 1 prime or composite?
- The number 1 is neither prime nor composite.
- Can you list all of the prime numbers up to 50 ?
- $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$

Some outstanding unsolved problems in number theory

- Is the number 1 prime or composite?
- The number 1 is neither prime nor composite.
- Can you list all of the prime numbers up to 50 ?
- $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$
- Can we run out of primes? I.e. do they ever stop appearing?

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?
- The idea behind this is quite beautiful and easy to understand.

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?
- The idea behind this is quite beautiful and easy to understand.
- Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ and, in general, $p_{i}=$ the i-th prime.

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?
- The idea behind this is quite beautiful and easy to understand.
- Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ and, in general, $p_{i}=$ the i-th prime.
- Let's check the primality of

$$
p_{1} p_{2} \cdots p_{n}+1
$$

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?
- The idea behind this is quite beautiful and easy to understand.
- Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ and, in general, $p_{i}=$ the i-th prime.
- Let's check the primality of

$$
p_{1} p_{2} \cdots p_{n}+1
$$

- What do you notice?

Some outstanding unsolved problems in number theory

- There are infinitely many prime numbers.
- How can we show, convince someone, of this?
- The idea behind this is quite beautiful and easy to understand.
- Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ and, in general, $p_{i}=$ the i-th prime.
- Let's check the primality of

$$
p_{1} p_{2} \cdots p_{n}+1
$$

- What do you notice?
- It is prime for all $n \geq 1$.

Some outstanding unsolved problems in number theory

- (Goldbach's Conjecture) Every even integer $n>2$ is the sum of two primes.

Some outstanding unsolved problems in number theory

- (Goldbach's Conjecture) Every even integer $n>2$ is the sum of two primes.
- (Twin Prime Conjecture) There are infinitely many twin primes. [If p and $p+2$ are primes we say that p and $p+2$ are twin primes.]

Some outstanding unsolved problems in number theory

- (Goldbach's Conjecture) Every even integer $n>2$ is the sum of two primes.
- (Twin Prime Conjecture) There are infinitely many twin primes. [If p and $p+2$ are primes we say that p and $p+2$ are twin primes.]
- An integer is perfect if it is the sum of its proper divisors.

Some outstanding unsolved problems in number theory

- (Goldbach's Conjecture) Every even integer $n>2$ is the sum of two primes.
- (Twin Prime Conjecture) There are infinitely many twin primes. [If p and $p+2$ are primes we say that p and $p+2$ are twin primes.]
- An integer is perfect if it is the sum of its proper divisors.
- Are there infinitely many perfect numbers?

Some outstanding unsolved problems in number theory

- (Goldbach's Conjecture) Every even integer $n>2$ is the sum of two primes.
- (Twin Prime Conjecture) There are infinitely many twin primes. [If p and $p+2$ are primes we say that p and $p+2$ are twin primes.]
- An integer is perfect if it is the sum of its proper divisors.
- Are there infinitely many perfect numbers?
- Is there a fast algorithm for factoring large integers? [A truly fast algoritm for factoring would have important implications for cryptography and data security.]

Even and Odd Numbers Problems

- What is an even number?

Even and Odd Numbers Problems

- What is an even number?
- An even number is any integer divisible by 2

Even and Odd Numbers Problems

- What is an even number?
- An even number is any integer divisible by 2
- Any even number may be written as a multiple of 2 that is as $2 n$.

Even and Odd Numbers Problems

- What is an even number?
- An even number is any integer divisible by 2
- Any even number may be written as a multiple of 2 that is as $2 n$.

Even and Odd Numbers Problems

- What is an odd number?

Even and Odd Numbers Problems

- What is an odd number?
- An odd number is any integer not divisible by 2

Even and Odd Numbers Problems

- What is an odd number?
- An odd number is any integer not divisible by 2
- Any odd number may be written as $2 n+1$.

Even and Odd Numbers Problems

- What is an odd number?
- An odd number is any integer not divisible by 2
- Any odd number may be written as $2 n+1$.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.
- Show that the sum of an even number and an odd number is an odd number.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.
- Show that the sum of an even number and an odd number is an odd number.
- Show that the sum of two odd numbers is an even number.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.
- Show that the sum of an even number and an odd number is an odd number.
- Show that the sum of two odd numbers is an even number.
- Show that the sum of three odd numbers is an odd number.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.
- Show that the sum of an even number and an odd number is an odd number.
- Show that the sum of two odd numbers is an even number.
- Show that the sum of three odd numbers is an odd number.
- Show that the square of an odd number is an odd number.

Even and Odd Numbers Problems

- Show that the sum of two even numbers is even.
- Show that the sum of an even number and an odd number is an odd number.
- Show that the sum of two odd numbers is an even number.
- Show that the sum of three odd numbers is an odd number.
- Show that the square of an odd number is an odd number.
- Show that the product of an odd number and an even number is an even number.

Even and Odd Numbers

- The product of two odd numbers is . . .

Even and Odd Numbers

- The product of two odd numbers is . . .
- The product of two even numbers is...

Even and Odd Numbers

- The product of two odd numbers is . . .
- The product of two even numbers is...
- The difference between two even numbers is . . .

Even and Odd Numbers

- The product of two odd numbers is . . .
- The product of two even numbers is...
- The difference between two even numbers is . . .
- The sum of two even numbers and one odd number is . . .

Even and Odd Numbers

- The product of two odd numbers is . . .
- The product of two even numbers is...
- The difference between two even numbers is . . .
- The sum of two even numbers and one odd number is . . .
- The square of an even number is . . .

